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Abstract. We prove the non-hyperbolicity of the Kobayashi dis-
tance for C1,1-smooth convex domains in C2 which contain an an-
alytic disc in the boundary or have a point of infinite type with
rotation symmetry. Moreover, examples of smooth, non pseudo-
convex, Gromov hyperbolic domains are given; we prove that the
symmetrized polydisc and the tetrablock are not Gromov hyper-
bolic and write down some results about Gromov hyperbolicity of
product spaces.

1. Introduction and statements

In [12], Gromov introduced the notion of almost hyperbolic space.
He discovered that “negatively curved” space equipped with some dis-
tance share many properties with the prototype, even though the dis-
tance does not come from a Riemannian metric. This gave the impulse
to intensive research to find new interesting classes of spaces which are
hyperbolic in that sense. In this paper we are mainly interested in
investigating this concept with respect to Kobayashi (pseudo)distance
on convex domains (the only exceptions being Propositions 1 and 2).
One may suspect that it is a restriction to consider only the Kobayashi
metric. Actually, because Carathéodory, Kobayashi and Bergman dis-
tances on convex domains, or more generally on C-convex domains
containing no complex lines, are bilipschitz equivalent [17, Theorem
12], it does not matter which one we choose (see e.g. [19, Th. 3.18,
Th. 3.20]).
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Definition 1. Let (D, d) be a metric space. Given points x, y, z ∈ D,,
the Gromov product is

(x, y)z := d(x, z) + d(z, y)− d(x, y).

Let
S(p, q, x, w) := min((p, x)w, (x, q)w)− (p, q)w.

D is Gromov hyperbolic with respect to d if and only if

sup
p,q,x,w∈D

S(p, q, x, w) <∞.

If S(p,q,x,w) ≤ 2δ, we say that D is δ-hyperbolic.

Definition 2. (D, d) is a path metric space if, given any two points
x, y ∈ D and ε > 0, there is a rectifiable path joining x and y with
length at most d(x, y) + ε.

We refer the interested reader to [5] or [19] for other characterisations
of Gromov hyperbolicity. We chose this one because it does not use
geodesics explicitly.

From now on, let D be a domain in Cn.
Denote by lD the Lempert function of D

lD(z, w) = inf{tanh−1 |α| : ∃ϕ ∈ O(D, D) with ϕ(0) = z, ϕ(α) = w},
where D is the unit disc. The Kobayashi distance kD is the largest
pseudodistance not exceeding lD. Lempert’s seminal paper [15] proved
that lD = kD for convex domains. An important property of kD is that
it is the integrated form of the Kobayashi metric κD on D, i.e.

kD(z, w)

= inf{
∫
κD(γ(t), γ′(t))dt : γ is a piecewise C1 curve joining z, w},

where

κD(z,X) = inf{|α| : ∃ϕ ∈ O(D, D) with ϕ(0) = z, αϕ′(0) = X},
z, w ∈ D, X ∈ Cn (we refer to [13] for basic properties of kD).

The first work concerning Gromov hyperbolicity on domains en-
dowed with Kobayashi distance was given by Balogh and Bonk [4] who
gave both positive and negative examples. Among other results, they
proved that the Cartesian product of strictly pseudoconvex domains
is not Gromov hyperbolic. It is a special case of a general situation
mentioned in many places but without proof (cf. [11]).

Proposition 1. Assume that (X1, d1) is a path metric space with d1

unbounded and (X2, d2) a metric space with unbounded d2. Let d =
max{d1, d2}. Then (X1 ×X2, d) is not Gromov hyperbolic.
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The next proposition is more general than the previous one. However
its proof uses Proposition 1.

Proposition 2. Let (X1, d1) and (X2, d2) be metric spaces, such that
one of them is a path metric space. Then (X1 × X2, d) is Gromov
hyperbolic if and only if one of the factors is Gromov hyperbolic and
the metric of the second one is bounded (in particular, it is also Gromov
hyperbolic).

Moreover, the proof of Proposition 1, and the remark following it,
show that the path property in Proposition 2 can be replaced the fol-
lowing.

Definition 3. A metric space (Y, d) admits the weak midpoints prop-
erty if either d is bounded or there exist sequences (xk), (yk), (zk) ⊂ Y
such that d(xk, yk)→∞ and

(1)
max(d(xk, zk), d(yk, zk))

d(xk, yk)
→ 1

2
.

Corollary 1. Let D1 and D2 be Kobayashi hyperbolic domains admit-
ting non-constant bounded holomorphic functions (for example, bounded
domains). Then D1 ×D2 is not Gromov hyperbolic.

Note also that if D1 and D2 are planar domains with complements
containing more than one point, then D1×D2 is not Gromov hyperbolic
w.r.t. the Kobayashi distance (use that kDk(z, zj)→∞ as zj → ∂Dk).

As an immediate consequence we obtain that the polydisc is not
hyperbolic. Moreover, even its “symmetrized” counterpart is not.

Proposition 3. Gn is not Gromov hyperbolic w.r.t. the Carathéodory
and the Kobayashi distances for n ≥ 2. Moreover, G2 is not Gromov
hyperbolic with respect to Bergman distance.

For the convenience of the reader, recall that the symmetrized poly-
disc Gn, which is of great relevance due to its properties and role (s.e.
[2], [7], [8]), is the image of the holomorphic map (s.e. [18])

π : Dn → Cn, π = (π1, . . . , πn),

πk(z1, . . . , zn)
∑

1≤j1<...<jk≤n

zj1 . . . zjk , z1, . . . , zn ∈ D, 1 ≤ k ≤ n

which is proper from Dn to Gn.
Another interesting domain, the tetrablock, fails to be hyperbolic.

Let

ϕ : RII → C3, ϕ(z11, z22, z) := (z11, z22, z11z22 − z2),
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where RII denotes the classical Cartan domain of the second type (in
C3), that is

RII = {z̃ ∈M2×2(C) : z̃ = z̃t, ‖z̃‖ < 1},

where ‖·‖ is the operator norm and M2×2(C) denotes the space of
2 × 2 complex matrices (we identify a point (z11, z22, z) ∈ C3 with a

2×2 symmetric matrix

(
z11 z
z z22

)
). Then ϕ is a proper holomorphic

map and ϕ(RII) = E is a domain (s.e. [18, Remark 4] ), called the
tetrablock.

Proposition 4. E is not Gromov hyperbolic.

Note that G2 and E are C-convex.
Buckley in [6], following Bonk, claimed that it is because of the flat-

ness of the boundary rather than the lack of smoothness that Gromov
hyperbolicity fails. Recently, Gaussier and Seshadri have provided a
proof of that conjecture. More precisely, their main result in [11, Theo-
rem 1.1] states that any bounded convex domain in Cn whose boundary
is C∞-smooth and contains an analytic disc, is not Gromov hyperbolic
with respect to the Kobayashi distance. Lemma 5.4 in their proof used
the C∞ assumption in an essential way. Our aim is to prove this result
in a shorter way in C2, assuming only C1,1-smoothness. Moreover, the
proofs of the facts we use are more elementary.

Theorem 1. Let D be a convex domain in C2 containing no com-
plex lines.1 Assume that ∂D is C1,1-smooth and contains an analytic
disc. Then D is not Gromov hyperbolic with respect to the Kobayashi
distance.

Besides, we give a partial answer to the question raised in [4].

Theorem 2. Let D be a C1,1-smooth convex bounded domain in C2

admitting a defining function of the form %(z) = −<z1 + ψ(|z2|) near
the origin, where ψ is a C1,1-smooth nonnegative convex function near
0 satisfying: ψ(0) = 0, and

(2) lim sup
x→0

logψ(|x|)
log |x|

= +∞.2

Then, D is not Gromov hyperbolic.

1Then D is biholomorphic to a bounded domain (s.e. [13, Theorem 7.1.8]).
2If ψ is C∞, the condition (2) means that 0 is of infinite type.
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There naturally arises the question whether there is any connection
between Gromov hyperbolicity and pseudoconvexity. The known ex-
amples do not say anything in this matter. Also, it is easy to construct
domains which are Gromov hyperbolic but neither pseudoconvex nor
smooth. Indeed, take any strictly pseudoconvex domain G. Assume
that A is a relatively closed subset of G with H2n−2(A) = 0, where
H2n−2 denotes the (2n− 2)-dimensional Hausdorff measure. To prove
our claim, it remains to notice that

kG|(G\A)×(G\A) = kG\A

(cf. [13, Theorem 3.4.2]) and to apply [4, Theorem 1.4].
The above example does not have a smooth boundary. The next

proposition yields, in particular, a family of non pseudoconvex domains
with smooth boundaries which are Gromov hyperbolic.

Proposition 5. Let G ⊂ Cn, n ≥ 2 be a bounded strictly pseudoconvex
domain and D b G have one of the following form:

• D is C2-smooth and its Levi form has at least one strictly
positive eigenvalue at each boundary point.
• D is a polydisc.

Then G \D is Gromov hyperbolic.

Observe that the Riemann Singularity Removable Theorem with [4,
Theorem 1.4] offers another possibility to achieve a similar statement
to the one above for the Bergman or the Carathéodory distances. Ob-
serve also that in the second case the domain has some flat part in its
boundary.

Throughout the paper dD denotes the (Euclidean) distance to ∂D.
A point z ∈ Cn we write as (z1, . . . , zn), zj ∈ C.

2. Proofs

Proof of Proposition 1.
Assume that d is δ

2
-Gromov hyperbolic. Put k = 3 + δ. Then there

are points y1, y2 ∈ X2 such that d2(y1, y2) = 2s ≥ 2k. Choose points
x1, x

∗
2 ∈ X1 with d1(x1, x

∗
2) ≥ 2s. By the path property of X1, there

is a d1-continuous curve γ : [0, 1] → X1 joining the points x1 and
x∗2 such that Ld1(γ) < d1(x1, x

∗
2) + 1. Note that t → d1(x1, γ(t)) is

continuous. Hence there is a smallest t0 such that d1(x1, γ(t0)) = 2s.
Set x2 := γ(t0).

Now L(γ|[0,t0]) ≥ d1(x1, x2) = 2s, and

L(γ|[0,t0]) = L(γ)−L(γ|[t0,1]) ≤ d1(x1, x
∗
2)+1−d1(x2, x

∗
2) ≤ d1(x1, x2)+1.
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Let t1 be the smallest number in [0, t0] such that d1(x1, γ(t1)) = s. Set
x3 := γ(t1). Then

d1(x2, x3) ≥ d1(x1, x2)− d1(x1, x3) = s, and

d1(x2, x3) = L(γ|[0,t1]) = L(γ|[0,t0])−L(γ|[t1,t0]) ≤ 2s+1−d1(x1, x2) = s+1.

Hence, s = d1(x1, x3) ≤ d1(x3, x2) < s+ 1.
Now define the following points in X1 × X2: x := (x1, y1), y :=

(x2, y1), w := (x3, y1), and z := (x3, y2). Then d(z, w) = d(z, x) =
d(z, y) = 2s and (x, y)w ≤ 1, (x, z)w = d(x,w) = s, (y, z)w = d(y, w) ≥
s − 1. By the assumption of δ

2
-hyperbolicity we reach the following

inequality

1 ≥ (x, y)w ≥ min{(y, z)w, (x, z)w} − δ ≥ s− 1− δ ≥ 2;

a contradiction.

Remark 1. An essential ingredient in the proof of Proposition 1 is
the existence of points x1, x2, x3 such the triangle inequality is a near-
equality, namely (x1, x2)x3 ≤ 1. The condition (1) is equivalent to
(x1, x2)x3 = o(d(x1, x2)), and |d(x1, x3)− d(x2, x3)| = o(d(x1, x2)).

Using this weaker hypothesis and following the steps of the above
proof, setting 2s = d(x1, x2) as before, we find

o(s) ≥ (x, y)w ≥ s− o(s)− δ,
leading to a contradiction when s→∞. Similar changes can be made
in the proof below.

Proof of Proposition 2.
Let first X1 be 2δ-hyperbolic and d2 ≤ 2c. Since d ≤ d1 + 2c, it

follows that

(x1, y1)w1 − 2c ≤ (x, y)w ≤ (x1, y1)w1 + 4c

and then (X, d) is (δ + 3c)-hyperbolic.
Assume now that (X, d) is δ-hyperbolic. Following the proof of

Proposition 1, we deduce that one of the distances is bounded, say
d2 ≤ 2c. Then we get as above that (X1, d1) is (δ + 3c)-hyperbolic.

Proof of Corollary 1.
It is enough to observe that ifG admits a non-constant bounded holo-

morphic function f and |f(zj)| → supG |f |, then kG(z, zj) ≥ cG(z, zj)→
∞.

Proof of Proposition 3.
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Fix a ∈ D. Put pa = π(a, . . . , a), qa = π(a, . . . , a,−a), ma = π(a, . . . , a, 0).
Holomorphic contractibility and product property gives the following

kD(πn(z), πn(w)) ≤ kGn(π(z), π(w))

≤ inf{kDn(z̃, w̃) : π(z) = π(z̃), π(w) = π(w̃)}

= inf

{
inf

1≤j≤n
kD(z̃j, w̃j), π(z) = π(z̃), π(w) = π(w̃)

}
, z, w ∈ Dn.

Consequently,

lim inf
a→∂D

[kGn(pa, qa)− kGn(qa, 0)− kGn(pa,ma)],

lim inf
a→∂D

[kGn(pa, qa)− kGn(pa, 0)− kGn(qa,ma)] > −∞,

and finally

(pa,ma)0 − (pa, qa)0, (qa,ma)0 − (pa, qa)0 = kGn(ma, 0) + O(1).

It remains to recall the fact that Gn is a c-finite compact domain (see
[8, Corollary 3.2]).

The last part follows from C-convexity of G2.

Proof of Proposition 4.
Let a ∈ (0, 1), and put Pa = diag(a, a), Qa = diag(a,−a). Recall

that Φa(Z) = (Z − aI)(I − aZ)−1 is an automorphism of RII . Direct
computation shows that

ϕ ◦ Φa(

(
z11 z
z z22

)
) = ϕ ◦ Φa(

(
z11 −z
−z z22

)
),

whenever

(
z11 z
z z22

)
∈ RII . Thus, Φa induces an automorphism Φ̃a

of E. Because of this and [1]

kE(0, (a, b, p)) = tanh−1 max
{ |a− bp|+ |ab− p|

1− |b|2
,
|b− ap|+ |ab− p|

1− |a|2
}
,

(a, b, p) ∈ E,

kE(Pa, 0) , kE(Qa, 0),
1

2
kE(Pa, Qa) = −1

2
log dD(a) + O(1).

Observe that ga = Φ̃−a ◦ f , where f(λ) = (0, λ, 0), is a geodesic s.t.
Pa, Qa ∈ im f. The (Kobayashi) middle point of ga|[ −2a

1+a2
,0] tends to the

boundary. Precisely

ga(0,−a, 0)→ diag(1, 0) if a→ 1

and it finishes the proof (after application of [16, Proposition 2]).
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Proof of Theorem 1.
Since ∂D contains an analytic disc, it is well known that it contains

an affine disc (cf. [17, Proposition 7]). We assume that this disc has
center 0 and lies in {z1 = 0}, and that D ⊂ {<z1 > 0}.
Lemma 1. We can find an r > 0 such that for any δ > 0 small enough
there exist two discs ∆(p̃δ, r) and ∆(q̃δ, r) in Dδ := D∩{z1 = δ} which
touch ∂D at two points p̂δ and q̂δ with ‖p̂δ − q̂δ‖ > 5r.

Proof. We identify ∂D∩{z1 = 0} with a closed, bounded, convex subset
of C, which is the closure of its interior. Call this interior D0.

There exists ζ0 ∈ D0 s.t. dist(ζ0,C \D0) = maxζ∈D0 dist(ζ,C \D0).
Then the set

M :=

{
p ∈ ∂D0 : |p− ζ0| = min

ξ∈∂D0

|ξ − ζ0|
}

is not empty and cannot be contained in any half plane
Hθ := {ζ : <[(ζ − ζ0)e−iθ] < 0}. If it were, one could find ε > 0 s.t.
dist(ζ0 + εeiθ,C \D0) > dist(ζ0,C \D0). So there are p̂ 6= q̂ ∈M such

that arg((p̂− ζ0)(q̂ − ζ0)−1) ≥ 2π/3. Take r ∈ (0,
√

3
5+
√

3
|p̂− ζ0|),

p̃ := ζ0 + (1 − r|p̂ − ζ0|−1)(p̂ − ζ0), and q̃ chosen likewise. Then
∆(p̃, r), ∆(q̃, r) ⊂ D0 and are tangent to ∂D0 at p̂ and q̂.

Now we want to move the discs we have constructed inside the do-
main. By C1,1-smoothness of D, we can move them (in C2) along the
vector (1, 0) inside D, that is ∆(p̃, r), ∆(q̃, r) ⊂ D ∩ {z1 = δ} = Dδ,
for 0 < δ < δ0. If they do not touch ∂Dδ, then shift them (separately
at every sublevel set) to the boundary but leaving their centers on the
real line passing through p̃+ (δ, 0) and q̃ + (δ, 0). Denote new discs by
∆(p̃δ, r), ∆(q̃δ, r), and by p̂δ, q̂δ points of contact of those discs with
∂Dδ. �

Set s̃δ = p̃δ+q̃δ
2
.

Choose now a point a = (δ0, 0) ∈ D (δ0 > 0) and consider the cone
with vertex at a and base ∂D∩{z1 = 0}. Denote by Gδ the intersection
of this cone and {z1 = δ}. For any δ small enough the line segment with
ends at p̃δ and p̂δ intersects ∂Gδ, say at pδ. Define qδ in a similar way.

We shall show that S(pδ, qδ, s̃δ, a)→ +∞ as δ → 0. For this we will
see that (pδ, s̃δ)a− (pδ, qδ)a → +∞ as δ → 0. It will follow in the same
way that (qδ, s̃δ)a − (pδ, qδ)a → +∞.

It is enough to prove that

(3) kD(qδ, a)− kD(s̃δ, a) < c1

and

(4) kD(pδ, qδ)− kD(pδ, s̃δ)→ +∞.
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Here and below c1, c2, . . . denote some positive constants which are
independent of δ.

For (3), observe that convexity and smoothness implies that

(5) kD(s̃δ, a) ≥ 1

2
log

dD(a)

dD(s̃δ)
and 2kD(qδ, a) ≤ − log dD(qδ) + c2

(cf. [16, (2)] and [13, Proposition 10.2.3]3). It remains to use that
dD(s̃δ) = dD(qδ) for any δ > 0 small enough.

To prove (4), denote by Fδ the convex hull of ∆(p̃δ, r) and ∆(s̃δ, r).
Then by inclusion kD(pδ, s̃δ) ≤ kFδ(pδ, s̃δ).

Claim. kFδ(pδ, s̃δ) < −1
2

log d′D(pδ) + c3, where d′D is the distance to
∂D in the z2-direction.

Indeed, for δ small enough

d′D(pδ) = dDδ(pδ) = dFδ(pδ) = d∆(p̃δ,r)(pδ)

because the closest point on ∂Dδ belongs to ∂∆(p̃δ, r). Now kFδ(pδ, s̃δ) ≤
kFδ(pδ, p̃δ) + kFδ(p̃δ, s̃δ).

By explicit computations in the circle,

kFδ(pδ, p̃δ) ≤ −
1

2
log d∆(p̃δ,r)(pδ) + C(r) = −1

2
log d′D(pδ) + C(r).

On the other hand, by using a finite chain of disks of radius r with

centers on the line segment from p̃δ to s̃δ, kFδ(p̃δ, s̃δ) ≤ C |p̃δ−q̃δ|
r
≤ C(r).

The desired assertion follows.
We shall show that

(6) 2kD(pδ, qδ) > − log d′D(pδ)− log d′D(qδ)− c4,

which implies (4), because d′D(qδ)→ 0 as δ → 0.
Since the Kobayashi distance is the integrated form of the Kobayashi

metric, we may find a point mδ ∈ D s.t.

‖pδ −mδ‖ = ‖qδ −mδ‖ ≥
‖pδ − qδ‖

2
,

kD(pδ, qδ) > kD(pδ,mδ) + kD(mδ, qδ)− 1.

Let p̌δ ∈ ∂D be the closest point to pδ in the direction of the complex
line through pδ and mδ.

By [17, (4)], there exists a constant C > 0 s.t. for every convex
domain D in C2, for any unit vector X

1

dX(z)
≤ |〈e1(z), X〉|

d1(z)
+
|〈e2(z), X〉|

d2(z)
≤ C

1

dX(z)
,

3C2-smoothness is assumed there but only the locally uniform interior ball con-
dition is used.
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where {e1(z), e2(z)} is a minimal basis at z, and {dj(z)}, j = 1, 2,
dX(z) are the respective distances in directions {ej(z)}, j = 1, 2, X.
Since d1 ≤ d2, this implies

(7) 1 ≤ |〈e1(z), X〉|+ |〈e2(z), X〉| ≤ C
d2(z)

dX(z)
.

Let X := mδ−pδ
‖mδ−pδ‖

, then ‖pδ − p̌δ‖ = dX(pδ), d
′
D(pδ) = d2(pδ), so (7)

translates to

(8) ‖pδ − p̌δ‖ < c5d
′
D(pδ).

By convexity, D is on the one of the sides, say Hδ, of the real tangent

plane to ∂D at p̌δ. Hence, since ‖mδ−p̌δ‖
dHδ (mδ)

= ‖pδ−p̌δ‖
dHδ (pδ)

, by (5),

(9) 2kD(pδ,mδ) ≥ 2kHδ(pδ,mδ) ≥ log
dHδ(mδ)

dHδ(pδ)
= log

‖mδ − p̌δ‖
‖pδ − p̌δ‖

,

And by the triangle inequality, and (8),

log
‖mδ − p̌δ‖
‖pδ − p̌δ‖

≥

log
‖mδ − pδ‖ − ‖pδ − p̌δ‖

‖pδ − p̌δ‖
≥ log(

r

2‖pδ − p̌δ‖
−1) ≥ log

r

2c5d′(pδ)
− 1,

for any δ > 0 small enough. Recall now that dD(pδ) is attained in
the z1-direction for any 0 < δ � 1. So 2kD(pδ,mδ) > − log d′D(pδ) −
c6. Similarly 2kD(qδ,mδ) > − log d′D(pδ) − c6, which implies (6), and
completes the proof.

Remark 2. All the above arguments hold in Cn, n ≥ 3, except (8).

Proof of Theorem 2.
Since the case when ψ(z0) = 0 for some z0 6= 0, is covered by Proposi-

tion 1, we may assume that ψ−1(0) = {0}. Also assume p = (1, 0) ∈ D.
Let α(x), small enough, an increasing function s.t. for any x >

0, ψ′(x) ≥ ψ′((1 − α(x))x) ≥ 1
2
ψ′(x). We choose, for x > 0, q(x) =

(ψ(x), 0), r(x) = (ψ(x),−(1− α(x))x), s(x) = (ψ(x), (1− α(x))x).
We claim that for x small enough:

(I) dD(q) = ψ(x),

(II) α(x)
4
xψ′(x) ≤ dD(s), dD(r) ≤ α(x)xψ′(x),

(III) the functions kD(s, q)+ 1
2

logα(x) and kD(r, q)+ 1
2

logα(x) are
bounded,

(IV) the function kD(r, s) + logα(x) is bounded.

Before we proceed to prove the claims we make some general obser-
vation about infinite order of vanishing.
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Lemma 2. For any ε > 0 and A > 0, there exists x ∈ (0, ε) such that
xψ′(x)
ψ(x)

> A.

Proof. Suppose instead that there exist ε > 0 and A > 0 such that
xψ′(x)
ψ(x)

≤ A for 0 < x ≤ ε. Then

d

dx
(logψ(x)) ≤ A

x
, 0 < x ≤ ε,

so log(ψ(ε))− log(ψ(x)) ≤ A (log ε− log x), i.e.

ψ(x) ≥ ψ(ε)

εA
xA, 0 < x ≤ ε,

which means that at the point 0 there is finite order of contact with
the tangent hyperplane, a contradiction. �

Assume for a while the claims and observe that for any x verifying
the conclusion of the observation we have

(r, p)q − (r, s)q, (p, s)q − (r, s)q ≥ −
1

2
log

ψ(x)

xψ′(x)
+ C1.

Since the above quantity can be made arbitrarily large, it finishes the
proof.

It remains to prove (I)-(IV).
(I) is clear. Next, since (ψ((1− α(x))x), (1− α(x))x) ∈ D, dD(s) ≤

ψ(x) − ψ((1 − α(x))x)) ≤ α(x)xψ′(x) by convexity. Let L be the real
line through (ψ((1 − α(x))x), (1 − α(x))x) and (ψ(x), x). Its slope is
less than ψ′(x), so dD(s) ≤ dist (s, L′), where L′ is the line through
(ψ((1− α(x))x), (1− α(x))x) with slope ψ′(x), so

dD(s) ≥ ψ(x)− ψ((1− α(x))x)√
1 + ψ′(x)2

≥ 1

2
α(x)× ψ′((1− α(x))x) ≥ 1

4
α(x)× ψ′(x).

Thus, α(x)
4
xψ′(x) ≤ dD(s) ≤ α(x)xψ′(x). Analogous estimates hold for

r, which gives (II).
The analytic disc ζ 7→ (ψ(x), xζ) provides immediate upper esti-

mates in (III) and (IV).
To get lower estimate for kD(s, q), we map D to a domain in C by the

complex affine projection πs to {z1 = ψ(x)}, parallel to the complex
tangent space to ∂D at the point (ψ(x), x). Then πs(D) = {ψ(x)}×Ds,
where Ds is a convex domain in C, containing the disk {|z2| < x}, and
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its tangent line at the point x is the real line {<z2 = x}. The projection
is given by the explicit formula

πs(z1, z2) =
(
ψ(x), z2 +

ψ(x)− z1

ψ′(x)

)
.

We renormalize by setting f+(z) = 1− 1
x
[πs(z)]2. Therefore

(10)

kD(s, q) ≥ kDs((1− α(x))x, 0) ≥ kH(f+(s), f+(q)) ≥ −1

2
logα(x) + C2,

where C2 > 0 does not depend on x, H = {z ∈ C : <z > 0}.
The estimate for kD(r, q) proceeds along the same lines, but we use

the projection πr to {z1 = ψ(x)} along the complex tangent space to
∂D at (ψ(x), x), given by

πr =
(
ψ(x), z2 −

ψ(x)− z1

ψ′(x)

)
.

Note that choosing f−(z) = 1 + 1
x
[πr(z)]2, we have f−(D) ⊂ {<z > 0}.

Now we tackle the lower estimates for kD(r, s). Let γ be any piecewise
C1 curve s.t. γ(0) = r, γ(1) = s. Let c0 <

1
2
. We claim that there exists

t0 ∈ (0, 1) s.t. if we set u = γ(t0), then |f+(u)|, |f−(u)| ≥ c0.

For this write γ = (γ1, γ2). Set ζ1 = 1 − ψ(x)
xψ′(x)

. By the explicit form

of πs, the condition |f+(u)| ≥ c0 reads |ζ1− γ2
x
| ≥ c0, and the condition

|f−(u)| ≥ c0 reads |ζ1 + γ2
x
| ≥ c0. We claim that the disks D(ζ1, c0) and

D(−ζ1, c0) are disjoint for any t. Indeed, they would intersect if and
only if 0 ∈ D(ζ1, c0), which implies

<
(γ1

x

)
≤ −1 + c0 +

ψ(x)

xψ′(x)
≤ −1

3

for any x s.t. ψ(x)
xψ′(x)

≤ 1
6
, which we may assume by Lemma 2. In

particular <γ1 < 0, which is excluded for any γ(t) ∈ D. Now let t1 =

max{t : γ2(t)
x
} ∈ D(ζ1, c0)}. Then γ1(t1)

x
/∈ D(−ζ1, c0)}, and by continuity

there is η > 0 s.t. γ1(t1+η)
x

/∈ D(−ζ1, c0), and of course γ1(t1+η)
x

/∈
D(ζ1, c0) by maximality of t1, so t0 = t1 + η will do.

Consequently, taking a curve γ such that kD(r, s)+1 ≥
∫ 1

0
κD(γ(t), γ′(t))dt,∫ 1

0

κD(γ(t), γ′(t))dt ≥
∫ t0

0

κD(γ(t), γ′(t))dt+

∫ 1

t0

κD(γ(t), γ′(t))dt

≥ kD(r, u) + kD(u, s),

and proceeding as in (10) we end the proof.
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Proof of Proposition 5.
First, assume that the Levi form of D has at every boundary point at

least one positive eigenvalue. Since by [4], every stricty pseudoconvex
set is Gromov hyperbolic with respect to the Kobayashi distanace, it
remains to be show the boundedness of the function kG\D − kG on

(G \D)× (G \D).
Near the inner boundary, it follows from the estimates for the Kobayshi

metric in [14] and [9] for C2 and Cn, respectively. Recall

(11) κG\D(z, νz) ≈ dG\D(z)−
3
4 ,

νz is a normal vector at z.
Let Dε := {z ∈ G \ D : dist(z,D) ≤ ε}. For ε > 0 small enough,

Dε b G, and Dε = {ζ + tνζ : 0 < t ≤ ε}, where νζ is the outside unit
normal vector to ∂D at ζ.

Let Kε := {z ∈ G \ D : dist(z,D) = ε}. It is a compact subset of
G \ D on which kG\D − kG is clearly bounded. By (11), all points in
Dε stand a bounded distance away from Kε in the kG\D distance, and
obviously in the kG distance, too. So, the difference between those two
distances cannot become unbounded near the inner boundary.

Now assume to get a contradiction that there exist sequences {zµ},
{wµ} ⊂ G\D s.t. kG\D(zµ, wµ)−kG(zµ, wµ)→ +∞ as µ→∞.Without

loss of generality, we may assume that zµ → z, wµ → w, z, w ∈ G\Dε.
When z 6= w, [10, Proposition 2.5], [10, Theorem 2.3] gives, respec-
tively, estimate from above if z, w ∈ ∂G, and if either z /∈ ∂G or
w /∈ ∂G. On the other hand, the application of [10, Corollary 2.4] pro-
vides the behaviour of kG\D near (z, w). To complete the proof it this
case, note that the estimates derived for kG\D are the same as for kG.

We are left with the case z = w ∈ G\G. The proof of [4, Proposition
1.2] says that [4, (1.3)] has local character. Thus [4, Theorem 1.1]
remains true for G\D near the boundary of G. But, simultaneously the
conclusion of [4, Theorem 1.1] holds for G, and it solves the remaining
situation.

For the case where D is a polydisc, since all the distances considered
are holomorphically invariant, we might assume that D = Dn. All the
above arguments work except now we do not know the behaviour of
Kobayashi metric near the inner boundary. However, we might proceed
as follows. Let r > 0 s.t. (1+r)Dn ⊂ G. Take some z0 ∈ [(1+ε)Dn]\Dn

,
where 0 < 3 ε < r. Thus, 1 + ε ≥ |z0

j | > 1 for some 1 ≤ j ≤ n. Observe
that

inf
z∈∂G,w∈∂((1+ε)Dn)

|z − w| > 2ε.
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Choose any point w(z0) ∈ {zj = z0
j }∩∂((1+2ε)Dn), which realizes the

distance z0 to ∂((1 + 2ε)Dn). Let Ωε := {zj = z0
j , |zk| < 1 + 3ε for k 6=

j} ⊂ Cn−1. With our choices, we have

kG\D(z0, w(z0)) ≤
inf
{
kΩε(z, w) : zj = wj = z0

j ; |zk| ≤ 1 + ε, |wk| ≥ 1 + 2ε, k 6= j
}
< M,

for some finite number M which does not depend on z0. The connect-
ness of ∂((1 + 2ε)Dn) ends the proof.
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